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Abstract

Many institutions worldwide are considering how to include uncertainty about future

changes in sea-levels and storm surges into their investment decisions regarding large capi-

tal infrastructures. Here we examine how to characterize deeply uncertain climate change

projections to support such decisions using Robust Decision Making analysis. We address

questions regarding how to confront the potential for future changes in low probability but

large impact flooding events due to changes in sea-levels and storm surges. Such extreme

events can affect investments in infrastructure but have proved difficult to consider in such

decisions because of the deep uncertainty surrounding them. This study utilizes Robust

Decision Making methods to address two questions applied to investment decisions at the

Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision

to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-bene-

fit test, and (2) Do sea-level rise projections and other information suggest such conditions

are sufficiently likely to justify such an investment? We also compare and contrast the

Robust Decision Making methods with a full probabilistic analysis. These two analysis

frameworks result in similar investment recommendations for different idealized future sea-

level projections, but provide different information to decision makers and envision different

types of engagement with stakeholders. In particular, the full probabilistic analysis begins by

aggregating the best scientific information into a single set of joint probability distributions,

while the Robust Decision Making analysis identifies scenarios where a decision to invest in

near-term response to extreme sea-level rise passes a cost-benefit test, and then assem-

bles scientific information of differing levels of confidence to help decision makers judge

whether or not these scenarios are sufficiently likely to justify making such investments.

Results highlight the highly-localized and context dependent nature of applying Robust

Decision Making methods to inform investment decisions.
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1. Introduction

Decision-makers planning for potential changes in future flood hazards grapple with the chal-

lenge of uncertain changes in future sea-levels and storm surges. One common approach to

managing this uncertainty is based on defining deterministic scenarios of future changes in

sea-levels [1,2] and choosing one or more scenarios, typically called the ‘best-estimate’, ‘worst

case’ or ‘plausible upper bound’, as a basis for decision-making [3,4]. This approach, which we

call the deterministic approach, has the advantage of being simple, but it has several draw-

backs, particularly with regard to the potential for extreme sea-level rise because it provides lit-

tle guidance on how to choose a worst case scenario nor how to incorporate that worst case

into decision making [5,6]. The choice of a particular ‘plausible upper bound’ scenario is

often subjective, but can have important consequences. For example, choosing a worst case

scenario that is too lax might lead to overconfidence, while a too stringent choice could waste

resources.

An alternative approach to manage uncertainty in sea-level changes is based on characteriz-

ing well-defined probability density functions and use this information in a risk-based decision

framework, for example a cost-benefit analysis based on maximizing expected utility [4]. This

approach, which we call the probabilistic approach, has the advantage of providing guidance

on how to incorporate extreme cases into decisions, typically by weighing the impacts of such

cases by their probability. However, the numbers provided by probabilistic approaches may

not accurately represent the whole range of uncertain factors involved in predicting future sea-

levels. In addition, most probabilistic projections of future sea-levels only present results con-

ditional on different scenarios of future global emissions of greenhouse gases (the highest pro-

jections are typically recently based on the RCP8.5 scenario). The deep uncertainty of the

many factors involved in assessing future sea-levels makes it difficult to construct with high

confidence single probability estimates, which we discuss in more detail in the following

section.

These problems can be managed within a probabilistic setting by also representing the (sec-

ond order) uncertainty of the probability density function (also called ambigious or imprecise

situations) [4]. An example of such an approach for coastal flood risk management is the sea-

level rise allowances approach [7], which estimates a vertical height buffer that takes into

account uncertainty not characterizable by a single probability density function using a convo-

lution of probabilistic SLR projection with an extreme value distribution. Buchanan et al. [8]

extends the sea-level rise allowances approach to include effects of ambiguity by also including

users’ preferences regarding their confidence in sea level projections, time-horizon and risk

tolerance. These sea-level rise allowances can help inform height adjustments that maintain

under uncertainty annual expected probability of flooding, and it has been shown to be useful

for local assessments [9].

Both the deterministic and the probabilistic approaches are designed to be incorporated

into a common decision analytic process, one that first characterizes what is known about

future states of the world and then uses this information to prescribe a best decision option

(see section 2 for a deeper discussion of these approaches). In this paper, we present a third

type of approach for characterizing uncertainty about future sea-level rise. This approach char-

acterizes available information in relation to specific threshold values that would support, or

not, a specific decision. As one advantage, such an approach provides a natural framework for

incorporating information that spans a wide range of different types of uncertainty, from well

characterized to deeply uncertain. Such an approach can be implemented using Robust Deci-

sion Making [10]. Robust Decision Making begins with a policy (or policies) under consider-

ation and then identifies the combinations of physical and socio-economic factors that best
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distinguish futures in which the policy meets and misses its goals. Robust Decision Making

makes it easier to explicitly distinguish among differing levels of scientific confidence in the

relevant information. The approach is also designed to facilitate a “deliberation with analysis”

process of decision support that helps parties to the decision reach consensus on actions they

can take even if they do not agree on expectations about the future [11].

Previous Robust Decision Making analyses have used deeply uncertain climate information

[12–14]. Here we explicitly use climate information of differing levels of uncertainty in the

case of adapting to changes in sea-level and future storm surges. For example, we characterize

the level of uncertainty for different contributions (e.g. thermal expansion, melting land ice,

and dynamic effects due to changes in ocean surface topography) based on our understanding

of the physical processes involved and the ability to model their behavior. This study demon-

strates three important elements of the approach of how to: (1) use climate information with

different levels of uncertainty, (2) combine uncertain climate information with uncertain

information about relevant socioeconomic factors, and (3) display the results to decision

makers.

Section 2 provides a background on assessing more extreme scenarios of future sea-level

rise, and it also introduces the concept of ‘deep uncertainty’ and how Robust Decision Making

can help manage deep uncertainty. Section 3 demonstrates our approach using a case study

focused on the Port of Los Angeles. Results are provided in Section 4. Section 5 compares the

results to a full probabilistic risk analysis and Section 6 provides a concluding discussion.

2. Background

2.1. Extreme scenarios of future sea-level rise

The IPCC Fifth Assessment Report (IPCC AR5) [15] reports a ‘likely’ sea-level rise range

between 0.52–0.98 m by 2100 (as a global mean relative to 1986–2005) for the RCP8.5 scenario.

The authors of the IPCC sea-level chapter have stressed that ‘likely’ should here be interpreted

as “roughly a one-third probability that sea-level rise by 2100 may lie outside the ‘likely’ range”

[16]. However, applications that require a high safety-level and for which future sea-levels are

critical might also want to assess more extreme projections, which is the focus of the present

paper. The uncertainty of the more extreme scenarios of future sea-level rise becomes a prob-

lem for both the deterministic and probabilistic approaches discussed above.

A main problem for the deterministic approach is that it is it is extremely difficult and con-

tentious to determine what is the worst case scenario for future sea-level rise. The highest pro-

jections or scenarios of sea-level rise in 2100 documented in previous assessments have varied

greatly (Fig 1 and S1 Table), which illustrates the difficulty in constraining the projected upper

bound.

Determining a worst case scenario for future sea-level rise requires taking into consider-

ation at least three main sources of uncertainty. The first is that most sea-level projections are

conditional on scenarios of external factors (e.g., emissions of greenhouse gases/radiative for-

cings/temperature). For example, the choice of emission scenario can often dominate the out-

come. It is therefore common to choose the upper range of the projections (based on the

highest emission scenario) as a basis for the potential worst-case scenario. However, the emis-

sion scenarios commonly used for these projections do not represent absolute bounds [17]. If

the range of emission scenarios does not span the full uncertainty range it can lead to overcon-

fidence in the worst case scenario. The second source of uncertainty is due to the treatment of

parameter uncertainty and internal variability, which can have large effects on the resulting

projections [5,18]. A third source of uncertainty is the underlying model structures that are

used. For example, there is ongoing scientific controversy over the reliability and robustness of
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so-called ‘semi-empirical models’ versus ‘process-based methods’ as a basis for making projec-

tions of future sea-level rise [19–21], in particular due to potential future acceleration of melt-

ing land ice [22–30]. However, our present understanding of the physical mechanisms

contributing to rapid changes in the dynamics of ice flow is still limited [31,32]. For example,

recent research shows how incorporating new structural mechanisms into ice sheet models

can radically change the results [29,30,33,34]. This means that choosing a worst-case scenario

for future sea-level rise is at this time far from trivial and uncontroversial. Constructing sea-

level projections requires strategic choices, for example about emissions scenarios, consider-

ation of sea-level contributions (e.g. thermal expansion, melting land ice, changes in ocean

topography), and model structure. These choices can all influence results and interpretations

in ways that may not be readily apparent to end-users of this information.

Characterizing sea-level projections in terms of probabilities goes back at least to Titus and

Narayanan [35], who constructed a probability distribution of future sea-level rise informed

by subjective expert assessments. More recently, Purvis et al. [36] inferred a probability

Fig 1. The highest projection or scenario of global mean sea-level rise (GMSLR) for the year 2100 for the five IPCC reports (red bars) and other

key studies published after IPCC AR4 (blue bars). Note that that these numbers are not strictly comparable, as they are based on different

assumptions regarding for instance emission scenarios, characterization of uncertainty (e.g. probability of exceedence) and reference years. See S1 Table

for more details and sources to the numbers.

https://doi.org/10.1371/journal.pone.0190641.g001
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distribution of sea-level rise based on the projections of the IPCC Third Assessment Report.

Jevrejeva et al. [37] constructed a probability density function of global sea-level at 2100 by

combining simulation experiments with results from formal expert elicitation. Kopp et al. [38]

provided a full probability distribution for both regional and global sea-level change that has

since been used in recent prominent North American studies [39,40]. Other recent studies

also produce probabilistic sea-level rise projections and characterize aspects of the surround-

ing deep uncertainties [29,30,41,42].

The probabilistic approach also has to deal with the complexities and uncertainties of pro-

jecting future sea-level rise. Subjective probabilistic expert assessments can provide valuable

information when appropriate experts are available, proper elicitation procedures are used,

and when the experts’ judgments can be calibrated against known data [43,44]. Such condi-

tions can however be difficult to fulfill when assessing never-before-observed phenomena

driven by poorly understood processes. Evidence suggests that experts tend to be over confi-

dent when making judgments in the presence of uncertainty, with historical examples includ-

ing numerical estimates of the speed of light, the mass of the electron and Avogadro’s number

[45]. Perhaps not surprisingly, assessments about future sea-level rise have diverged in recent

decades due to advances in modeling and understanding of the physical processes, an effect

referred to as “negative learning” [46]. Le Cozannet et al. [47] argue that subjective expert

knowledge is compatible with too many different probability functions, and that extra-proba-

bilistic approaches are better suited to address the uncertainty in future sea level rise.

2.2. Characterizing uncertainty in future sea-level rise

Sea-level rise assessments must consider incomplete scientific knowledge, different methodo-

logical possibilities, and/or subjective judgments and interpretations about the analyses. Deci-

sion-making based on such information can be therefore seen as occurring under ‘deep

uncertainty’. Lempert et al. [48] defines deep uncertainty as “the condition in which analysts

do not know or the parties to a decision cannot agree upon (1) the appropriate models to

describe interactions among a system’s variables, (2) the probability distributions to represent

uncertainty about key parameters in the models, and/or (3) how to value the desirability of

alternative outcomes.” (p 3–4) (see also Walker et al. [49]).

One implication of deep uncertainty is that a single probability distribution cannot fully

capture all relevant information we have of the situation, in particular the degree of confidence

that we have in the assigning exact probabilities to different outcomes. The use of uncertain

probabilistic beliefs therefore presents challenges for standard approaches to decision making,

such as expected utility maximization [50,51]. This raises questions on how much we should

rely on the results based on probabilistic approaches. The problem is that practical decision-

making based on a single probabilistic characterization of deeply uncertain parameters, such

as a probability distribution of future sea-level rise, may be very sensitive to low-confidence

information. It is therefore highly valuable if other approaches can be used to test the results of

a decision analysis.

Both the deterministic and the probabilistic approaches discussed above can be seen as

working within the normal paradigm of science-based decision-making, which have been

called “science-first” [52], “predict-then-act” [53], and “agree on assumptions” [54]

approaches. While scenarios of future sea-level rise can certainly be very useful for creating

impacts assessments [55–57], the deterministic scenario approach can prove less useful for spe-

cific adaptation decisions, because it provides only very limited avenues to ensure that the sce-

narios being considered are those most relevant to the decisions that need to be made. A

probabilistic characterization of future sea-levels may prove, as we have argued above, very
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difficult and contentious because well-characterized distributions for climate variables are not

available and probabilistic projections of relevant socioeconomic factors may be even more

unreliable [46,58–62].

Under conditions of deep uncertainty, it may prove more effective to begin with the specific

decisions under consideration, and then use requirements associated with these decisions to

identify the most important climate and socioeconomic scenarios to distinguish and consider.

The literature offers several names for such approaches, including “context-first” [63], “assess

risk of policy” [52,53,64], “vulnerability and robust response” [12], and “agree on decisions”

[54]. These specific approaches differ in their characterizations of uncertainty, specific decision

criteria, and the information they provide to decision makers (see for instance, the comparison

in Hall et al. [12]). But they all share the central idea of defining a proposed policy or policies;

identifying vulnerabilities of that policy, defined as conditions where the policy fails to meet its

goals; identifying potential policy responses to those vulnerabilities; and then organizing sce-

narios to help policy makers decide whether and when to adopt those responses. The Thames

River barrier plan provides an important example of such an approach in the context of sea-

level rise [65,66]. Brown and Wilby [67] employ such approaches in water supply planning.

This paper focuses on a particular challenge in implementing such approaches—the ques-

tion of how to organize a rich body of information about climate and socioeconomic factors

into the scenarios that can be used to inform infrastructure investment decisions. Past applica-

tions have identified simple thresholds to represent their decision-critical scenarios, such as in

the Thames River Barrier work. But in general, such scenarios will be multi-faceted, combining

a range of different climate and other factors.

To address this challenge, the Robust Decision Making approach used in this study orga-

nizes the decision analysis around two questions: (1) under what future conditions would Port

of Los Angeles (LA) find it advantageous to have hardened its terminal at the next upgrade,

and (2) does current science and other available information suggest that these conditions are

sufficiently likely to justify a decision to harden at the next upgrade? As discussed in more

detail below, this allows us to use information of different levels of confidence at different

stages of the analysis. The decision model (in this study a simple benefit cost calculation) uses

single probability density functions representing the well-characterized climate and socio-eco-

nomic uncertainties. The model is run over an experimental design informed by those factors

regarded as deeply uncertain. The resulting database of model runs can then be used to iden-

tify decision-relevant scenarios, that is, the future conditions in which the proposed infrastruc-

ture investment fails to pass a benefit-cost test, and the probability threshold that this scenario

would need to exceed to justify the investment. This probability threshold can then be com-

pared to any low confidence probabilistic information that may be available regarding the

deeply uncertain factors.

The distinction between those factors regarded as deeply uncertain and those regarded

as well-characterized depends on analysts’ and/or decision makers’ confidence in the probabi-

listic judgments about those factors. It is useful to note that mis-characterizing a well-charac-

terized uncertainty as deep incurs a computational penalty, expanding both the number of

model runs required and the complexity of the data analysis. Mis-characterizing a deep uncer-

tainty as well-characterized may, however, lead to a policy response brittle to unexplored

uncertainties.

3. Materials and methods

Our approach requires a focus on specific decision in order to characterize the uncertainty.

We thus demonstrate the approach with an idealized case study focused on the Port of LA.
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Many jurisdictions worldwide have been or are considering how to include sea-level rise into

investments and management of large infrastructure investments [65,68–73]. The Port of

LA provides a convenient and interesting example for how to address the potential for pre-

sumably low probability but large impact levels of extreme sea-level rise in investment plans

and decisions.

We demonstrate the proposed approach for characterizing uncertainty by applying and dis-

cussing the methods in each step of the case study. The process consists of constructing a

model for the decision problem that relates actions to consequences (Section 3.1), as well as a

model of which uncertainties to treat as well characterized and which to treat as deep (section

3.2). The model of the decision problem and uncertainties are then used as the basis for identi-

fying scenarios where the proposed policy fails to meet its goals (Section 4.1), and assessing

whether the identified critical scenarios are sufficiently likely to justify taking an alternative

decision (Section 4.2).

3.1. A model of the decision challenge for Port of Los Angeles

The Port of LA is one of the largest container shipping facilities in the world. It owns many

square miles of land, but its main capitol stock consists of twenty container ship terminals—

large steel and concrete structures that serve as docking facilitates for large container ships, the

foundations for the large moving cranes that load and unload these ships, and transportation

hubs for the trucks and trains that carry goods inland. When an organization such as Port of

LA is building new infrastructure or conducting major renovations of existing facilities, it may

prove useful to consider future sea-level rise. The effect of sea-level rise on Port of LA’s deci-

sions regarding its container ship terminals follows this pattern. This study was conducted in

collaboration with technical staff from the Port of LA. Port of LA was chosen because it pro-

vided an interesting and convenient case study. During the course of the study, Port of LA

staff provided information and data and provided feedback on the analysis and results in a

series of meetings.

The edge of Port of LA’s terminals currently lies about 3.7 meters above mean sea-level. As

illustrated in Fig 2, conduits carrying high-voltage electric lines run underneath the main floor

and lie 2.8 meters above mean sea-level. A breakwater, managed by the U.S. Army Corps of

Engineers, provides the main barrier to wave action and storm surge in the harbor. The design

and use of the terminals is driven by container ship technology. Port of LA first built such ter-

minals in the 1960s and gave them a major overhaul in the 1980s when the size of container

ships increased considerably. Several factors will drive the lifetime of Port of LA’s current ter-

minals, including how long they take to wear out and any impending changes in container

ship technology, both of which are uncertain. Port of LA’s terminals are relatively high above

today’s mean sea-level and have never been flooded in the past few decades. The largest sea-

level anomaly recorded at Port of LA from tide gauges during the past 100 years is roughly 1.5

meters, which is well below the current level of the conduits carrying the high voltage wires

(3.7 meters above mean sea-level). Given this large apparent safety margin, Port of LA would

only consider sea-level rise when planning a major upgrade of its terminals because hardening

at that time would cost much less than it would at any other time.

Using the Robust Decision Making approach described in Section 2.2, we approximate the

Port of LA’s decision challenge as a sequential decision problem with a simple benefit cost

framework. As shown in Fig 3, at some time in the future Port of LA will upgrade one of its ter-

minals. It can decide to spend an additional sum Charden to make the terminal practically invul-

nerable to plausible future sea-levels during the terminal lifetime. Such hardening might

involve redesigning the electric conduits currently under the terminal and raising the terminal
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considerably higher. If the Port of LA decides to harden the terminal, they pay an additional

C1 = Charden now, and then suffer no further costs from any plausible amount of sea-level rise

through the next upgrade, which would occur no less than several decades later. If the Port of

LA decides not to harden its terminals at the next upgrade, and there is no sea-level rise large

enough to flood the terminals, the costs are C3 = 0. However, if Port of LA decides not to

harden, the terminal may prove vulnerable during its lifetime to sea-level rise. Storm surges

combined with high tides and a higher mean sea-level might then occasionally flood the termi-

nal. Such flooding would cause damage and disrupt operations.

We assume that Port of LA could tolerate some small flooding frequency, but if the flooding

became too frequent, the organization would need to respond at significant cost. We assume

that if the frequency of flooding exceeds this critical level (Pcrit), that Port of LA, rather than

just hardening the existing terminal, would choose to conduct a major upgrade that would

Fig 3. Simplified representation of Port of LA’s decision regarding whether or not to harden its terminal at its

next upgrade and the costs resulting from its choices.

https://doi.org/10.1371/journal.pone.0190641.g003

Fig 2. Schematic of Port of LA container ship terminal showing height (H) above mean sea-level.

https://doi.org/10.1371/journal.pone.0190641.g002
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include the hardening. Note that this assumption may underestimate Port of LA’s future

options, but it provides a simple representation of the current cost implications. A discussion

of the implications of this and other assumptions is given below. If it chooses not to harden at

the time of the next upgrade, they might be forced to upgrade in the future earlier than would

otherwise be necessary. We assume that the main economic consequence of such an early

upgrade is the early retirement of otherwise valuable infrastructure. Assuming the value of the

terminal decreases linearly over its lifetime (i.e. linear depreciation), the resulting costs are

C2 tð Þ ¼ Cupgrade
L � t

L

� �

e� dt; ð1Þ

where Cupgrade is the cost of the upgrade, L is the lifetime of the terminal in years, d is the dis-

count rate in percent per year, and τ is the year when the frequency of flooding first exceeds

the allowable threshold. The terminal lifetime is deeply uncertain because it depends on both

the physical lifetime of the structure as well changes in shipping technology, which may or

may not drive early obsolescence. Table 1 summarizes these and the other model parameters.

A decision to harden at the next upgrade would pass an economic cost-benefit test if the

cost for doing so is less than the expected present value cost of any future early upgrade forced

by sea-level rise. In other words, the expected present value of the savings due to the hardening

(SHarden) should be positive. For convenience, we normalize all the costs to fractions of the

Table 1. Parameters affecting Port of LA’s decision whether or not to harden terminals at next upgrade and the treatment of the uncertainty in those parameters.

Height and hardening cost values for a decision regarding PoLA terminals is discussed in Sections 3 and 4.

Robust Decision Making Uncertainty Characterization Full Probabilistic Uncertainty Characterization

Future Sea-level Well-characterized joint probability distribution for a, b, and c. Well-characterized joint probability distribution for a,

b, c, c�, and t�.Sea-level rise in 2011 (a)

Normal rate of sea-level rise

(b)

Normal sea-level rise

acceleration (c)

Rate of abrupt sea-level rise

(c�)

Deeply uncertain with range: 0 to 30 mm/yr

Year abrupt rise begins (t�) Deeply uncertain with range: 2010 to 2100

Daily anomaly location (μ) Deeply uncertain set of GEV distributions, with scale ranging from ψ = 517

to 569 mm, constant shape ξ = -0.305, and location

μ = -176+0.1033(ψ-517) mm (constant mean).

Set of GEV distributions with constant shape ξ = -0.305,

uniform distribution over scale

517 mm�ψ�543mm, and corresponding location

μ = -176 mm+0.1033(ψ-517mm)

Daily anomaly scale (ψ)

Daily anomaly shape (ξ)

Future Terminal

Management

Lifetime (L) Deeply uncertain with range: 30 to 100 years Consider a range of 30 to 100 years

Max allowable overtop

probability (Pcrit)

Deeply uncertain with range: 5% to 50% per year Consider uniform distribution over range 5% to 50%

per year

Decision Year Known at decision time: 2020 Known at decision time: 2020

Height (H) above mean sea-

level

Known at decision time: 2804 mm Known at decision time: 2804 mm

Current hardening cost

(CHarden/ Cupgrade)

Known at decision time: 1% Known at decision time: 1%

Discount rate (d) Known at decision time: 5% Known at decision time: 5%

https://doi.org/10.1371/journal.pone.0190641.t001
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upgrade cost so that SHarden is approximated by the following expression:

SHarden ¼

expð� dtÞ
L � t

L

� �

�
Charden

Cupgrade
for t < L

�
Charden

Cupgrade
for t � L

8
>>><

>>>:

ð2Þ

The present value savings, and in particular the year τ, will depend on the future sea-levels,

which is approximated as a sum of two time-series:

yt ¼ zt þ xt; ð3Þ

where zt is the annual mean sea-level in the Port of LA for time index t, and xt is the maximum

hourly anomaly. We use an idealized time series estimator to approximate future mean annual

sea-level as:

zt ¼ aþ bt þ ct2 þ c�Iðt � t�Þ; ð4Þ

where the term a is the sea-level anomaly at time zero (2011), b is a constant rate (mm/year),

and c is an acceleration term (mm/year2). (See Table 1 for a summary of the parameter defini-

tions and symbols). To simplify our analysis, we assume that these first three terms represent

only the effects of relatively well-understood processes, such as thermal expansion of the

oceans due to rising temperatures and the melting of small glaciers, that are well-constrained

by past observations. (As discussed in more detail in the next section, these terms should more

properly be considered as a mix of well and less well understood processes.) The fourth term

represents currently poorly understood and poorly constrained processes, for example, poten-

tially abrupt changes in the dynamics of ice flow [34], which we estimate using a step-function

increase in the rate of sea-level rise c� (mm/year) that occurs after some time t�.

While changes in the annual mean sea-level are an important driver, any actual flooding

events will happen on much shorter timescales [71,74,75]. The local, hourly anomalies at Port

of LA, xt, are well approximated by a generalized extreme value (GEV) distribution. Thus, we

assume flooding would force an early upgrade in the first year τ in which:

P xt � H � ztð Þ ¼ 1 � exp � 1þ x
H � zt � m

c

� �� 1=x
( )

� 1 � ð1 � pcritÞ
1

24�365

h i
; ð5Þ

where μ, ψ, and ξ are the GEV distribution’s location, scale, and shape parameters and the fac-

tor (24�365) translates the hourly frequencies into annual values.

We solve this model numerically by finding the smallest value of τ that satisfies Eq (5) and

then evaluating the present value cost savings with Eq (2).

Any savings from a decision to harden at the next upgrade, as estimated by Eq (2), are con-

tingent on the values of the fourteen parameters shown in Table 1. The calculation would be

simple if these values were known precisely. The challenge is to evaluate the decision given

large and divergent levels of uncertainty regarding these parameter values.

The Robust Decision Making approach addresses this challenge by answering two ques-

tions: (1) under what future conditions would Port of LA find it advantageous to have hard-

ened its terminal at the next upgrade, and (2) does current science and other available

information suggest that these conditions are sufficiently likely to justify a decision to harden

at the next upgrade? We answer these questions through the following steps: 1) concisely sum-

marizing the future conditions in which hardening at the next upgrade passes the cost-benefit

test; 2) estimating the probability threshold that is the likelihood for these cases that would
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justify hardening at the next upgrade; and 3) evaluating scientific lines of evidence to help

judge whether or not these cases are sufficiently likely to justify a decision to harden at the

next upgrade. The following sections describe each of these steps.

3.2. Judging which uncertainties to treat as well characterized and which to

treat as deep

To implement this Robust Decision Making analysis, we need to construct an experimental

design that effectively samples over the plausible combinations of parameters in Table 1. The

table divides the parameters affecting Port of LA’s potential savings into two categories: eight

parameters describe future sea-level and six describe the terminal and its future management.

The experimental design must appropriately combine parameters with different levels of

uncertainty—some parameters have known values, some are best represented with well-char-

acterized probability distributions, and some parameters are deeply uncertain. We categorize

the uncertainties surrounding sea-level rise contributions as either well-characterizable or

deeply uncertain based on several criteria, including our current understanding of the physi-

cal processes and capability of Earth system models to simulate observed trends and

variability.

We treat four of the terminal management parameters—the decision year, height of the ter-

minal, hardening cost, and discount rate—as known at the time of the decision. The other two

terminal management parameters—the terminal lifetime and the maximum allowable annual

flooding probability—refer to choices made by future Port of LA decision makers, and are

thus deeply uncertain. We assume that the three coefficients of the quadratic expression for

the well-understood processes of sea-level rise, the first three terms of Eq (4), can be accurately

described with a single, well-characterized, joint probability distribution. We treat the other

five parameters describing future sea-level rise—the rate and starting time of any abrupt

changes and the three parameters describing the future distribution of hourly anomalies—as

deeply uncertain.

We estimate a single, joint probability distribution over the parameters for what we have

assumed to be the well-represented contributions to future sea-level rise by fitting the first

three terms of Eq (4) to observed sea-levels over the past two centuries (Fig 4). The three

polynomial parameters describe initial sea-level (corresponding to year ~2012), linear trend of

sea-level rise, and non-linear (quadratic) sea-level acceleration. Similar to the many analyses

that adopt sea-level rise projections based on simple, semi-empirical models or scenarios

[36,70,71], we use a quadratic form that has provided useful insights [76–80] (Fig 4).

The quadratic form provides a reasonably good fit to observed historical trends of global

sea-level changes over the past 200 years. Projections of thermosteric sea-level rise using this

semi-empirical approach generally agree with ranges shown in the IPCC Fourth and Fifth

Assessments [15,82]. We use global sea-level rise from Jevrejeva et al. [78] as the basis for the

polynomial fit, in order to be consistent with the original Port of LA study. It is meant as a

proof-of-concept example highlighting the decision making methodology, and we note that

newer observational SLR time series [38] and/or different time periods for the polynomial fit-

ting can influence projected SLR ranges beyond what we consider here. The historical trends

are generally consistent with more recent estimates [76,81] (Fig 4). For the projections, we

combine the projected polynomial fit with the deeply uncertain future acceleration and resam-

ple the parameters to fit the idealized 2100 sea-level rise scenarios (Fig 5). Note the contribu-

tions of observational errors and differences in historical data sets to projected sea-level

uncertainties (shown in Fig 4) are relatively small compared to the deeply uncertain polar land

ice contributions for extreme sea-level rise scenarios (Fig 5).
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We do not include regional assessments or probabilistic projections here, which can be use-

ful for local studies [38–40,84]. We fit our time series projections to different theoeretical prob-

ability density functions of 2100 sea-level rise (described below), reflecting distinctly different

attitudes and expectations about future sea-level rise including deep uncertainty surrounding

the upper-bound. Using more complex sea-level models [29,85,86] would improve the physical

realism of the analysis, but would also significantly complicate and, we hypothesize, not con-

siderably affect the conclusions of the decision-analyses described below.

A simple bootstrap analysis accounting in an approximate way for auto-correlation in the

model residuals [87] (discussed below) is used to estimate the joint distribution of the parame-

ters a, b, and c using observations of globally and annually averaged sea-levels [78]. The sea-

level observations are normalized to a zero anomaly in the year 2000 to simplify comparisons

Fig 4. Observed annual global sea-level change based on Jevrejeva et al. [78] (gray curve), Hay et al. [81] (blue curve and shading), Church and

White [76] (red curve and shading), and the polynomial best fit to the Jevrejeva et al. [78] data (black curve). Shading represents plus or minus

one standard deviation.

https://doi.org/10.1371/journal.pone.0190641.g004
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with other studies such as CO-CAT [88]. We fit the model in a least-squares sense, approxi-

mate the data-model residuals using an autoregressive model of order one, superimpose boot-

strap realizations of the residuals to the original fit, and then re-estimate the parameters for

each bootstrap realization. This process provides a distribution of a, b, and c that approximates

past observed sea-level variability quite well, as well as future projections based on semi-empir-

ical [89] and mechanistic ocean models [5]. We have conducted additional sensitivity tests to

the auto-regressive estimator and our parameter estimates are generally robust to different val-

ues of innovation variance reflecting time variations in the observational error in sea-level.

Local observed and projected sea-level rise rates can differ substantially from global esti-

mates. For high global mean sea-level rise futures, the regional response along the western coast

of North America may be larger than the global average, due to the fingerprint effect of Antarc-

tic ice mass loss [38]. We represent the projection uncertainties introduced by the discrepancies

between local and globally averaged sea-levels by expanding the uncertainty range of future sea-

level rise (discussed below). The use of the globally averaged data (as opposed to local observa-

tions) is an approximation and reflects the idealized nature of this sensitivity analysis. This

approximation guards to some extent against the effects of the observed decadal-scale oscilla-

tions in the rate of regional sea-level rise and the resulting potential for a considerable increase

in the rate of sea-level rise in the Eastern Pacific, for example due to circulation effects [78,90].

In addition, this approximation makes it easier to link the sea-level rise projections affected by

well-represented uncertainties to studies analyzing deep uncertainties (discussed next).

The other uncertainties in Table 1—five for future sea-level and two for future terminal man-

agement—are deep. The deeply uncertain parameters include the rate (c�) and onset timing (t�)

of abrupt sea-level rise associated with potential future accelerations due to melting land ice (see

also Wong et al. [91] as well as Diaz and Keller [92]), as well as the location, scale, and shape

parameters of the tail area distribution of sea-level anomalies accounting for potential future

changes in the behavior of extremes. The deeply uncertain terminal management parameters

include the lifetime and maximum allowable overtop probability. These uncertainties are repre-

sented by a range, or set, of plausible values. For each parameter a range is chosen that is

Fig 5. Observed annually and globally averaged sea-level anomalies from Jevrejeva et al. [78] (green circles), the polynomial

model best fit to the observations (black line) and model hindcast scenarios (grey lines) that sample the unresolved variability

(left panel). Bootstrap projections to 2100 highlighting potential future acceleration due to melting land ice (right panel).

Projections are fitted to an idealized distribution of 2100 sea-level rise based on Pfeffer et al. [24] with an additional expansion to

account for uncertainty in thermosteric sea-level rise [5,83].

https://doi.org/10.1371/journal.pone.0190641.g005
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consistent with physical or other constraints and sufficiently wide to contain the boundary

between cases where hardening at the next upgrade does and does not meet the cost-benefit test.

Port of LA has no experience with extreme flooding and thus no solid estimates regarding

the maximum allowable flooding probability—that is, the frequency of annual flooding that

would force the organization to undertake an early terminal upgrade. We hence choose a wide

range of values, between a 5 percent and 50 percent chance of annual flooding, that would

force an early upgrade. The 5 percent criterion was provided by Port of LA. The probabilities

are relatively high compared to other typical flood risk assessments (e.g. a one percent chance

of flooding per year, see, for example, Jonkman et al. [93], which may reflect a concern with

the costs of business interruption rather than that of physical damage to facilities themselves.

Along these lines, we also choose a wide range for the lifetime L of its terminals to be between

30 and 100 years.

The parameters c� and t� represent the contribution of poorly understood processes to

future annual mean sea-level rise. As described in the next section, we choose the values of c�

and t� to approximate two expert assessments. For t�, we add as an additional constraint that

such a rise could begin immediately, and we take as our upper bound the end of the considered

time horizon (the year 2100), where a rapid rise would no longer be relevant to any near-term

hardening decision by Port of LA.

To treat the future daily anomaly, we begin with the common assumption of stationarity in

the intra-annual variability, modeled by superimposing an estimate of the past variability on

the projected future changes in the annual mean. The State of California Sea-level Rise Interim

Guidance Document (CO-CAT [88]) assessed this as a “reasonable starting point” because lit-

tle information exists to project any future changes in this variability. A time series of past

anomalies at Port of LA is generated by subtracting the observed change in the annual mean

from local observations [94] spanning roughly eight decades. A GEV distribution is then fit to

these anomalies. We employ the GEV as a simple and parameterizable interpolator that yields

good agreement with the observations. Note, we use the GEV fit here to highlight the model

sensitivity, rather than for parameter estimation. As shown in Fig 6, a fit with location μ = -176

mm, scale ψ = 517 mm, and shape ξ = -0.305 reproduces the observed anomalies quite well.

Note also that the hourly anomalies range over roughly 3000 mm, which is approximately two

orders of magnitude larger than the standard deviation of the unresolved interannual variabil-

ity of approximately 24 mm. As an approximation in the interest of model parsimony, we

hence neglect the relatively small effects of the unresolved intra-annual variability for the pro-

jection of flooding risks.

There is, however, no guarantee that the future distribution of hourly anomalies will remain

stationary due to climate change and other factors [95,96]. To represent these potential, deeply

uncertain future changes we consider a set of GEV distributions, created by varying the scale

parameter over the range 517 mm� ψ� 569 mm, where the lower bound is the current scale

and the upper bound is 10 percent larger. In general, other distribution parameters (such as

the shape parameter) could also be varied, but as shown below there is insufficient scientific

information available to justify this degree of fidelity. The mean of a GEV distribution is given

by the expression μ+ψ[Γ(1−ξ)−1]/ξ, where Γ() is the gamma function [97]. As the scale varies,

the mean of the hourly anomaly around the annual mean must remain constant (our treat-

ment of the anomalies demand that they do not shift the annual mean), so we write the loca-

tion of each distribution in our set as

m ¼ � 176 � ðc � 517mmÞ½Gð1:305Þ � 1� ¼ � 176þ 0:1033ðc � 517mmÞ ð6Þ
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4. Results

4.1. Identifying scenarios where the policy fails to meet its goals

Our initial analysis considers a decision where Port of LA upgrades a terminal in 2020; the

costs of hardening are small, Charden/Cupgrade = 1 percent; and Port of LA uses a discount rate

of 5 percent per year. As this analysis will show, this low hardening cost is considered because

it is at the high end of near-term investments Port of LA might reasonably make to protect its

terminals against extreme sea-level rise.

We begin by evaluating the decision model using both the deeply uncertain and well-char-

acterized uncertainties. We generate a 500-point Latin hypercube (LHC) sample [98] over the

five deeply uncertain parameters: three for future sea-level rise (c�, t�, ψ) and two for future ter-

minal management (L and pcrit), using the parameter ranges shown in Table 1. The LHC

method provides a numerically efficient sample of the space of deeply uncertain parameters.

For each case in this sample, we calculate the expected cost using the parameters representing

well-characterized uncertainty. In particular, we calculate the cost savings for 700 equally likely

combinations of values for the parameters a, b, and c. Thus, for each of the 500 cases in the

LHC sample, the expected savings of a decision to harden at the next upgrade is calculated,

contingent on the distribution for the parameters with well-characterized uncertainty (a, b,

and c) and on a particular set of values for the deeply uncertain parameters c�, t�, ψ, L, and

pcrit).

Fig 6. Black line shows the General Extreme Value (GEV) distribution fitted to the hourly sea-level anomalies

from the annual mean values observed near the Port of LA [94]. The interpolated GEV distribution parameters are

given in Table 1. The blue line shows the GEV distribution with an expanded scale parameter of y considered in the

decision analysis described in the main text.

https://doi.org/10.1371/journal.pone.0190641.g006
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The results of this economic analysis (Fig 7) show that in 327 of the 500 cases a decision to

harden at the next upgrade would fail a cost benefit test. In 173 of the cases, such a decision

would have some cost savings. In a small number of those cases, the cost savings would be

quite large, up to 20 times the cost of hardening.

We next perform a scenario discovery analysis using this database of 500 cases to identify a

scenario in where Port of LA might regret a decision not to harden at the next upgrade. Sce-

nario discovery [99] applies a cluster analysis to a database of simulation model results, seeking

to identify those combinations of uncertain input parameters, which most concisely predict

certain policy-relevant outcomes. Here we seek those combinations of the five deeply uncer-

tain parameters that best predict those cases where a decision to harden at the next upgrade

would pass the cost-benefit test. Previous applications of scenario discovery have used PRIM

(patient rule induction method) to identify these clusters of cases. PRIM is a user-interactive

bump-hunting algorithm that identifies hyper-rectangular regions in the input space of the

simulation model [100]. Here this approach is augmented by first applying a principle compo-

nent analysis (PCA) to the parameters c� and t� and then applying PRIM to the resulting

Fig 7. Histogram of model results generated with 500-point Latin Hypercube sample over deeply uncertain parameters in

Table 1. Positive values indicate cases in which hardening at next upgrade passes a cost-benefit test.

https://doi.org/10.1371/journal.pone.0190641.g007
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rotated set of parameters. The PCA-based preprocessing step transforms the original model

input parameters so that PRIM can then identify high quality hyper-rectangular scenarios in

the new rotated coordination system [100]. This PCA and PRIM combination can prove useful

in situations where the scenarios can be best described by linear combinations of some uncer-

tain input parameters, rather than just hyper-rectangular regions in the space of original input

parameters.

This scenario discovery analysis suggests, as shown in Table 2, that the decision to harden

at the next upgrade might pass the cost-benefit test in cases with a near-term and rapid

increase in sea-level, given by c� � 14 mm
yr þ 0:3 mm

yr t� � 2010ð Þ; a long terminal lifetime, given

by L>50 years; and a significant increase in the hourly anomaly, given by ψ>533 mm. The

value of the critical threshold pcrit appears relatively unimportant to Port of LA’s decision of

whether or not to harden at the next upgrade.

These three conditions define a cluster of cases that we label the Harden at Next Upgrade

scenario. As described in Bryant and Lempert [99], this cluster can serve as a scenario useful

for decision-making. The three conditions represent the scenario’s driving forces. The cluster

analysis also provides two measures—coverage and density—of the scenario’s quality. This sce-

nario has coverage of 63 percent, that is 109 of the 173 cases in the LHC sample where harden-

ing at the next upgrade passes a cost-benefit test meet the three conditions in Table 2. The

scenario has density of 96 percent, that is, of the 113 cases in the sample that satisfy the condi-

tions shown in Table 2, 109 of them pass the cost-benefit test.

It is possible to calculate a probability threshold (Pthres) for this scenario, that is, the likeli-

hood Port of LA would have to ascribe to it so that the expected cost savings for hardening at

the next upgrade are greater than zero. Note the probability threshold (Pthres) is separate from

the critical probability (Pcrit) defined previously representing the critical frequency of flooding

that would lead to a major upgrade including hardening. This probability threshold Pthres is the

smallest value that satisfies

Pthres
�SHarden Scenario þ ð1 � PthresÞ

�SAll Other Cases � 0: ð7Þ

where �SHarden Scenario is the average savings of the cases that satisfy the conditions shown in

Table 2 and �SAll Other Cases is the average savings of all the other cases in the considered parameter

sample. We estimate these averages with a uniform distribution over the two respective sets of

cases, which yields a Pthres> 7%.

Thus Port of LA might reasonably chose to harden its terminals at the next upgrade if they

judged the probability of the Harden at Next Upgrade scenario, as defined by the conditions in

Table 2, to be at least 7 percent. Note that this represents a lower bound to the probability

threshold, since the uniform distribution over the futures in the “Harden at the Next Upgrade”

scenario weights the futures with high and low mean savings equally. If the futures on the far

right-hand side of Fig 7 were less likely than those near the vertical red line, then the probabil-

ity threshold would be higher, and the conclusions in Section 6 strengthened.

Table 2. Parameter ranges defining the Harden at Next Upgrade scenario. The center column shows the conditions under which a decision to harden at the next

upgrade would pass a cost-benefit test.

Parameter Low Pass cost-benefit test High

c� � 0:3 mm
yr t� � 2010ð Þ � � 27 mm

yr � 14 mm
yr � 30 mm

yr

L �30 years �50 years �100 years

ψ �517 mm �533 mm �569 mm

https://doi.org/10.1371/journal.pone.0190641.t002
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4.2. Assessing whether the identified policy-relevant scenarios are

sufficiently likely to justify taking an alternative decision

We now analyze information that can help inform the judgments regarding the likelihood of

the Harden at Next Upgrade scenario. In particular, climate science can help inform judg-

ments about the likelihood of values of the parameters c�, t�, and ψ that satisfy the conditions

that define this scenario.

Note first that the condition c� � 14 mm
yr þ 0:3 mm

yr t� � 2010ð Þ implies a sea-level rise contri-

bution from poorly understood processes of about 1400 mm in 2100. When combined with

the roughly 500 mm contribution from well-understood processes, the Harden at Next

Upgrade scenario implies a roughly 2 meter (m) sea-level increase by century’s end. Such a

level is within, but at the high end, of some current sea-level rise projections (see Figs 1 and 8).

This suggests that the scenario may be less likely than the 7 percent threshold derived from the

economic analysis. A more detailed understanding can result from estimates of joint probabil-

ity distributions for c� and t�. While imprecise, such probability estimates can usefully

Fig 8. Parameter estimates resulting from the model calibration to the: (top) extended scenarios of Pfeffer et al. [24], and (bottom) the CO-CAT

[88] scenarios. The former uses a beta distribution and the latter a uniform distribution, and both begin with a uniform prior, as described in the text.

https://doi.org/10.1371/journal.pone.0190641.g008
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contribute to judgments about the conditions under which Port of LA might consider harden-

ing its terminals at the next upgrade.

Joint probability distributions are estimated for c� and t� by sampling from broad prior dis-

tributions and applying a rejection sampling to approximate the results of these bounding

analyses. This study uses two different sets of projections—a modification of the analysis of

Pfeffer et al. [24] and the California Sea-level Rise Interim Guidance document CO-CAT

[88]—which yield two different joint probability distributions and thus a range of estimates

for the likelihood of the condition c� � 14 mm
yr þ 0:3 mm

yr t� � 2010ð Þ.

Pfeffer et al. [24] analyze kinematic constraints on the sea-level rise contributions from

land-based ice and derive lower and upper bounds of 785 and 2008 mm for sea-level rise in the

year 2100 and a “more plausible” estimate of about 800 mm. Note this range extends well

beyond the “likely” upper bound of ~1 meter documented in the IPCC’s Fifth Assessment

Report [15]. However, as documented in the Summary for Policy Makers, there is low confi-

dence in the representation of ice sheet dynamics in the process-based models used to make

these projections. Hence, scenarios with larger sea-level rise are possible, but deeply uncertain.

We introduce two adjustments to the Pfeffer et al. [24] results because these previous results

neglect uncertainties due to thermosteric sea-level rise [5,83] and the divergence between

global mean and local sea-level change. The lack of uncertainty assessment of about the ther-

mosteric sea-level rise component is addressed by adding an additional rise of -230 to + 200

mm. This uncertainty range is derived from a comparison of observed sea-levels and an

ensemble of runs from an Earth System Model of Intermediate Complexity, that includes a

three-dimensional dynamic ocean general circulation model and samples key parametric

uncertainties. The asymmetry of this range is due to the slight difference between the median

thermosteric sea-level rise estimate adopted by Pfeffer et al. [24] and the estimate from Sriver

et al. [5]. The local circulation effects are approximated with an additional rise of +/- 300 mm.

This range is approximately the range of projected local sea-level rise anomalies with respect to

the global mean at the end of this century [82]. This range is also roughly consistent with the

divergence of the simple parabolic fit to the local (Port of LA) and global observations [78]

extrapolated to the year 2100, but we note that they are relatively large compared to recent

plausible range of +/- 14 cm, based on CMIP5 analysis [38]. These two adjustments yield mod-

ified lower and upper bounds for the annual mean local sea-level in 2100 of 255 mm to 2508

mm with a more plausible value of 950 mm (Fig 8). This line of evidence is then approximated

using a rescaled beta distribution, chosen because it provides a good approximation of the

upper and lower bounds, as well as the most-likely regions.

The California Sea-level Rise Interim Guidance Document (CO-CAT [88]) reviewed a

number of published sea-level rise projections and derived a sea-level rise range between 310

and 1760 mm for California in the year 2100. Note that these “projections do not account for

catastrophic ice-melting” and are for a specific region (as opposed to the global mean). In the

same way as we have modified the Pfeffer et al. [24] scenario, we approximate the local circula-

tion effects with an additional rise of +/- 300. This results in a modified CO-CAT [88] range of

10 to 2060 mm by the end of the twenty-first century. We approximate this line of evidence

using a uniform distribution, since CO-CAT reports no most plausible value.

As noted previously, a key aim of the study is to address how decision strategies may change

based on expectations about future sea-level rise. In this capacity, the Co-CAT [88] and

extended Pfeffer et al. [24] scenarios work well, since they represent two idealized sea-level rise

assessments with varying upper bounds and shapes (Fig 8). The differences in the upper

bounds and likelihood estimates between the two scenarios are useful reflections of the deep

uncertainties surrounding potential future sea-level rise. This analysis can be refined using
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probabilistic sea-level rise projections and/or regional assessments for studying local impacts,

which is beyond the scope of this idealized sensitivity analysis.

We use the distributions derived from Pfeffer et al. [24] and CO-CAT [88] to estimate

likelihoods for the condition c� � 14 mm
yr þ 0:3 mm

yr t� � 2010ð Þ. As shown in Fig 9, the two

Fig 9. The red line shows estimates of the likelihood of the first condition describing the Harden at Next Upgrade
scenario using the: (a) Beta distribution fit to the extended projections of Pfeffer et al. [24] and (b) the uniform

distribution fit to the projections of CO-CAT [88] shown in Fig 8. Dots represent c�/t� pairs that are jointly sampled

(along with polynomial parameters a, b, and c) based on the idealized sea-level rise projections (represented as beta

and unform distributions). Green and blue lines show an analogous condition for two other Port of LA facilities,

Berths 206–209 and Alameda and Harry Bridges Crossing, respectively.

https://doi.org/10.1371/journal.pone.0190641.g009
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distributions, though different, yield similar estimated likelihoods for this condition, of

roughly 14 percent and 16 percent for the Pfeffer et al. [24] and CO-CAT [88] bounding analy-

ses, respectively. The differences between the distirbutions and correlation between c� and t�

depends on the projected sea-level rise scenario. We can express the probability that the

inequality is satisfied as the narrow range:

14% � Pr c� � 14
mm
yr
þ 0:3

mm
yr

t� � 2010ð Þ

� �

� 16% ð8Þ

The scientific evidence regarding the condition for the hourly anomaly is even more sparse

than that for c� and t�. Some studies suggest that the future hourly anomaly may remain

unchanged from that currently observed. Translated into the approximation using a GEV dis-

tribution, this implies that is the distribution parameters may be assumed to be constant over

time, i.e.: ψffi517mm. For instance, the global-scale data analyses of Woodworth and Blackman

[101] and Menendez and Woodworth [102] conclude that the changes in the extremes are sim-

ilar to the changes in the mean. In contrast, the studies of Bromirski et al. [103] and Mendez

et al. [104] find that the observed variability of sea-levels has been increasing at several loca-

tions. Cayan et al. [105] analyze model projections and place bounds on future increases in

storminess near San Francisco. These bounds would correspond in our analysis to a range of

517mm� ψ� 533mm. (Recall that Fig 6 compares the GEV distribution with ψ = 533mm to

that with ψ = 517mm).

These bounds may prove too narrow because the models used to project the short-term var-

iability might miss important processes, such as potential changes in El Niño/Southern Oscil-

lation properties or storm surges [82], which is why the range used in our experimental design

(See Table 1) is larger. Note that the values at the high end of our experimental design range

produce a storm surge of roughly 1.6 meters at the return rates of relevance to this analysis. At

this time it is very difficult to define physically based bounds for future changes in storm fre-

quency and intensity due to climate change [105]. However, future and more refined data and

numerical analyses might be able to improve the estimate of the maximum surge height that

different-sized storms might produce in the Port of LA, and thus develop more plausible

bounding cases for the parameter ψ to be used in future analyses.

This disparate evidence regarding the likelihood of the Harden at Next Upgrade scenario

can be summarized by asking the following question: Given the estimated range of likelihood

for the condition on c� and t�, what range of likelihoods on the conditions for ψ and L would

yield a probability for the scenario greater than its critical threshold? That is, what set of values

for Pr[ψ > 533 mm] and Pr[L > 50 years], the probabilities, respectively, that ψ and L meet the

conditions shown in Table 2, satisfy the equation

Pr c > 533mm½ � � Pr L > 50years½ � � Pr c� � 14
mm
yr
þ 0:3

mm
yr

t� � 2010ð Þ

� �

� 7% ð9Þ

Fig 10 shows the resulting probability region, which suggests that Port of LA should only

choose to harden its terminals at the next upgrade if it ascribes probabilities of at least about 67

percent to the conditions L>50 years and ψ>533 mm. Given that the condition on the lifetime

is longer than those Port of LA has previously experienced, and the condition on the hourly

anomaly increase is at the high end of available scientific evidence, Port of LA might reason-

ably choose not to harden at the next upgrade of this facility, even at a cost of 1 percent of the

cost of the upgrade. Extended analysis of four different PoLA facilities finds one for which

hardening at the next upgrade might prove warranted [106].
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5. Comparision with a full probabilistic analysis

It proves useful to compare this Robust Decision Making analysis with a full probabilistic anal-

ysis of the same Port of LA decision considered above. Table 3 summarizes some of the key dif-

ferences between Robust Decision Making and a probabilistic analysis, using three attributes:

how uncertainties are characterized, the decision criteria used, and the decision process with

decision makers [107].

The probabilistic analysis uses the best available science to estimate a single joint probability

distribution for all the uncertain input parameters in Table 1. The decision model would use

probability density functions for all the inputs, rather than distinguishing between well-charac-

terized and deeply uncertain factors. As its decision criterion, the probabilistic analysis seeks

the optimal strategy for the best-estimate distribution, rather than a strategy robust over a

wide range of futures. Finally, the probabilistic analysis envisions that experts gather informa-

tion and provide a rankings of strategies to decision makers, while the Robust Decision

Fig 10. Probabilities of a long terminal lifetime (L> 50 years) and significant increase in the daily anomaly (ψ> 533 mm)

required for decision to harden terminal bottoms (H = 2804 mm) (at next upgrade to pass a cost-benefit test. Dark and light

shaded regions show probabilities required using high and low estimates, respectively, of likelihood of condition on c� and t�. The

dashed lines show boundary of probability regions for decisions to harden at two other Port of LA facilities, Berths 206–209 and

Alameda and Harry Bridges Crossing, respectively.

https://doi.org/10.1371/journal.pone.0190641.g010

Table 3. Comparison of RDM and Probabilistic Risk Analysis (PRA) methods.

Probabilistic Risk Analysis (PRA) Robust Decision Making (RDM)

Characterization of

uncertainty

Well-characterized (single joint probability distributions) Deep uncertainty—Characterize vulnerabilities of proposed

strategies

Decision criteria Optimal Choice Robustness (satisfice over wide range of futures)

Decision process Experts gather evidence and provide rankings to decision

makers

Deliberation with analysis

https://doi.org/10.1371/journal.pone.0190641.t003
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Making analysis envisions a process of deliberation with analysis in which analysts and deci-

sion makers work together to propose strategies and understand their vulnerabilities.

The right-most column of Table 1 shows our best estimate probability distribution for each

of the model input parameters. The distributions of the model parameters were produced by

fitting to both the observational data and the extended Pfeffer and CO-CAT scenarios. These

fits also provide distributions for the a, b, c, c�, and t� parameters. The correlations between

these later parameters and c� and t� are weak (Fig 9). The Robust Decision Making analysis in

this study ignores them, while the full probabilistic analysis includes them. We have no infor-

mation to distinguish the relative likelihood of the Pfeffer et al. and CO-CAT scenarios, so we

assume a uniform prior—that is, each are assumed to be equally likely.

We use a set of GEV distributions, with the scale spanning the full range, 517mm� ψ�
543mm, described in the literature. With no information to distinguish the relative likelihood

of these values, a uniform prior is assumed. As in the Robust Decision Making analysis, the

location of hourly anomaly distribution for value of ψ is given by Eq (6) to leave the mean

annual sea-level unchanged. We have no information to determine the relative likelihood of

different values of the maximum allowable overtop probability, pcrit, so we assume a uniform

prior over the range used in the Robust Decision Making analysis. We also lack any informa-

tion to determine the relative likelihood of different values of the terminal lifetime. But many

analyses do show the results of full probabilistic analyses as a function of a range of values for a

single parameter; a convention we will adopt here.

Fig 11 shows the results of this full probabilistic analysis, plotting the probability that hard-

ening at the next upgrade would pass a cost-benefit test and the expected cost as a function of

the terminal lifetime L. These results use 1954 Monte Carlo samples for each value of L. The

probability of a positive cost-benefit is never high—at most, 16 percent for terminal lifetimes

of 100 years. Not until the terminal lifetime exceeds about 50 years do our calculations show a

greater than 1 percent probability that early hardening passes a cost-benefit test. Note an

important distinction between the samples based on the Robust Decision Making analysis and

the full probabilistic analysis: In the Robust Decision Making-analysis, the quasi-random Latin

Hypercube sample aims only to explore the full range of plausible model results. The sample

makes no statement about the relative likelihood of alternative cases in the real world. In the

full probabilistic analysis, the Monte Carlo sample aims to reproduce our best-estimate of the

likelihood of cases in the real world, in order to facilitate the calculation of expected cost.

The Robust Decision Making and full probabilistic analyses thus appear to give similar rec-

ommendations. Both suggest that Port of LA should not harden its terminals at the next

upgrade at a cost of 1 percent (or higher) of the total upgrade cost. Only in situations where

the terminal lifetime is very long, greater than about 50 years, is there any possibility that such

hardening would pass a cost-benefit test, and even in such cases the probability that it would

do so seems low.

As the decision support literature makes clear, however, a final policy prescription is not

the only, nor even primary, relevant attribute of a decision support methodology [11]. In par-

ticular, the transparency and credibility of the information provided to decision makers, and

the process by which they interact with the information can prove at least as important. In this

light, it is important to note that the Robust Decision Making and PRA analyses provide differ-

ent information to decision makers and envision two different types of engagement with stake-

holders. As shown in Table 3, the full probabilistic analysis collects all the analysts’ judgments

at the start of the process. Once the probability distributions over future states of the world are

defined, the analysis yields recommendations that follow deductively from the probability esti-

mates and the simple, but explicit, representations of the decision makers’ preferences (e.g.,

the adopted decision-criterion of an expected benefit-cost ratio). As its primary products, the
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analysis provides distributions of the outputs of interest to decision makers—in this case, the

expected cost of an early upgrade, and a ranking of the desirability of alternative decisions. In

this case, the early upgrade is less desirable because its expected cost exceeds that of not

upgrading. Sensitivity analysis can also suggest which uncertain input parameters contribute

most to the variance of the outputs.

The Robust Decision Making analysis follows a more complicated process and one that

employs analysts’ and decision makers’ judgments at more stages. The process begins by focus-

ing on a specific proposed decision. Analysts then create an experimental design over the

uncertain model input parameters designed to test this decision, judging which uncertainties

to treat as well characterized and which to treat as deep. Next analysts and decision makers use

simulation model results to identify scenarios where the policy fails to meet its goals—in this

case, where a decision to harden at the next upgrade fails a cost-benefit test. Analysts then

Fig 11. Results of full probabilistic analysis showing expected cost of hardening at next upgrade and probability of passing a cost-benefit test

as a function of the terminal lifetime.

https://doi.org/10.1371/journal.pone.0190641.g011
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present the scientific evidence that could help decision makers decide whether such scenarios

are sufficiently likely to justify taking an alternative decision. The Robust Decision Making

analysis does not in general produce a ranking of strategies, but rather provides information to

help decision makers weigh their choices. As part of this process, the Robust Decision Making

analysis explicitly describes the scenarios where a proposed policy may fail to meet its goals

and defines a probability threshold—that is, the likelihood that a decision maker would ascribe

to that scenario in order to justify taking action to address it.

The two approaches also embody different treatments of uncertainty, which we can usefully

summarize with reference IPCC uncertainty guidance. This guidance provides a template for

judging confidence in scientific judgments based on the level of supporting evidence and

agreement [108].

Fig 12 uses this template from the IPCC uncertainty guidance [108] to summarize the scien-

tific information about future sea-level rise used in our Robust Decision Making and full prob-

abilistic analyses. The plot (Fig 12) shows the a, b, and c parameters in the upper right-hand

corner because, as described above, there exists a high level of both evidence and agreement

that the polynomial model structure fit to past observations should provide reasonable projec-

tions of the contributions of future sea-level rise due to well-resolved processes such as thermal

expansion. If these terms were more properly represented as a mix of well and less well-under-

stood processes, the former would remain in this upper right-hand corner and the latter would

reside elsewhere on the figure. The figure shows the c� and t� in the middle left-hand side,

because there is little direct observational evidence for potential changes in the system dynam-

ics (for example by “rapid dynamical changes in ice-flow” [22]). However, there exists some

agreement on the upper bounds on such contributions to sea-level rise over the next century

Fig 12. Assessment of the evidence and level of agreement underlying the scientific information used in this analysis,

following the characterization method of Mastrandrea et al. [108]. The size of the text reflects the importance of

information to Port of LA’s decision. Italics show that the factor was considered deeply uncertain in the Robust Decision

Making analysis.

https://doi.org/10.1371/journal.pone.0190641.g012
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(Fig 1). Fig 12 shows ψ in the lower middle left because few studies and little agreement exist

on how climate change might affect the future hourly anomaly at Port of LA, but the world-

wide diversity of current storm surge patterns in different locations with different topogra-

phies may provide useful evidence for estimating upper bounds on what the port might expect

over the twenty-first century.

The results in Section 4, as would an analysis of variance in the full probabilistic analysis,

makes clear that Port of LA’s decision whether or not to harden at the next upgrade depends

strongly on scientific estimates in which we have low confidence. The full probabilistic analysis

does not distinguish between varying levels of uncertainty when informing investment deci-

sions. This distinction suggests that the standard probabilistic approach can tend to lead to

overconfident results, because it undervalues the importance of low-confidence information.

The Robust Decision Making analysis, in contrast, distinguishes between information with dif-

ferent levels of confidence, differentiating between relatively well-characterized uncertainty

(e.g., sea-level rise that follows the past observed dynamics) and deeply uncertain information

(e.g., abrupt potential future dynamic changes of land ice, the hourly anomaly, or the charac-

teristics of future terminal management). Thus, a decision maker using a standard probabilis-

tic approach may be more vulnerable to low confidence information than the decision maker

using the Robust Decision Making approach.

The full probabilistic analysis embodies a concept where experts assemble the best available

science so that this information can be used to inform a ranking of alternative decision

options. However, as noted previously, this approach can lead to underestimation of risk in

the presence of deep uncertainty, since it does not distinguish between differing levels of scien-

tific confidence [51]. The Robust Decision Making analysis embodies a scenario concept that

explicitly distinguishes among differing levels of scientific confidence. In addition, the analysis

helps decision makers recognize potentially stressing cases, consider how they might respond,

and communicate this information within and externally to their organization. In other work,

we have described how decision analytic approaches such as Robust Decision Making that

begin with policies, identify vulnerabilities, and then suggest potential responses can lead to

more productive engagement with decision makers than do approaches that rank options

based on specified probabilities [48,99,109]. Here we show how the former approach can also

represent in the analysis information with differing levels of uncertainty, which may also facili-

tate engagement with decision makers.

6. Discussion and conclusions

This study presents a robust decision making framework for addressing potential investment

decisions under deep uncertainty. Proposed investment decisions at the Port of LA are ana-

lyzed as a traceable application of the methods. Results show how an organization such as the

Port of LA can evaluate the potential for presumably low probability but large impact levels of

extreme future sea-level rise in its infrastructure investment decisions. Considering such

extreme climate changes can prove difficult because of the deep uncertainty involved, not only

in any scientific projections, but also regarding any expectations of future socioeconomic con-

ditions that may affect judgments about the value of alternative near-term infrastructure

investments.

This study addresses this challenge by employing Robust Decision Making to address the

following question: Should Port of LA make an additional investment to harden its facilities

against potential extreme future sea-level rise during the next major upgrade of those facilities?

Robust Decision Making represents one of a number of new decision analytic approaches that

address deep uncertainty by beginning with a specific set of options facing a decision maker
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and then identifying specific information about the uncertain future that might affect the deci-

sion makers’ choice among those options. The approach used here is based on two questions:

(1) Under what future conditions would a Port of LA decision to harden its facilities at the

next upgrade pass a cost-benefit test, and (2) Does current science and other available informa-

tion suggest that such conditions are sufficiently likely to justify such an investment?

In particular, this study’s Robust Decision Making analysis evaluates the benefits and costs

of a Port of LA decision to harden at the next upgrade over 500 cases representing a wide

range of assumptions about future sea-level rise and its future facility management. The analy-

sis next uses a cluster analysis on the resulting database of simulation model outcomes to con-

cisely describe scenarios where a decision to harden passes a cost-benefit test and estimates a

probably threshold for those scenarios, that is the likelihood Port of LA would need to ascribe

to the scenario to choose to harden. Finally, the analysis evaluates the scientific evidence that

would suggest whether the scenario is sufficiently likely or unlikely to justify a decision to

harden.

Our analysis employs many simplified representations of important physical uncertainties

and processes, which introduce important caveats and also point to future research. For exam-

ple, the sea-level projections do not include the effects of different greenhouse gas forcing pro-

jections [82,110]. We do not consider regional variations in sea-level projections from the

global mean [38]. The simple sea-level rise model fails to account for the complex mixture of

response time-scales [29,61,111,112]. We assume that future changes in the dynamics of the

system (e.g., due to changes in ice-flow dynamics) introduce a step-function change in the rate

of sea-level rise, when in reality such changes would happen over time. In particular, some

fraction of past sea-level changes are due to changes in land-ice and model hindcasts and pro-

jections of this component are deeply uncertain [113–116]. In representing all past sea-level

rise as well-characterized uncertainty, we neglect considerable structural uncertainties about

the most appropriate mixture of functional forms [117]. The Robust Decision Making frame-

work used in this study could accommodate these richer physical descriptions and their multi-

ple levels of attendant uncertainties. For instance, these processes might be represented with

more complex models that resolve more of the relevant processes using physically motivated

parameterizations [29,86]. These more complex models would introduce additional uncertain

parameters into the Robust Decision Making analysis. While the neglect of such processes in

this study would not seem to affect any of our conclusions, including them in more detailed

treatments of port infrastructure investment decisions would make for useful further research.

We apply Robust Decision Making to a single proposed future investment decision, but the

methodologies could be broadened to increase the robustness of the decision. For example,

recent work using a route-map approach suggests that early implementation of low-regrets

measures in advance of a proposed decision time point can increase the robustness of adapta-

tion decisions related to sea-level changes [65]. Such measures could include: strengthening

existing defenses, implementing a monitoring framework, and continued research into the

causes and effects of changes in extreme sea-level rise events. In particular, monitoring and

research would likely lead to improved understanding of key physical processes controlling

sea-level changes, such as melting land ice and changes in storminess.

This study also compares its Robust Decision Making analysis of a decision to harden the

terminal bottoms to a full probabilistic analysis. Such an analysis uses the best available science

to estimate a single joint probability distribution for the uncertain model input parameters

and then calculates the expected savings from an investment to harden and the probability that

such an investment passes the cost-benefit test.

The Robust Decision Making and full probabilistic analyses give similar recommendations

to the Port of LA regarding the investment considered here. It is important to note, however,
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that the two approaches differ in several key aspects. First, the full probabilistic provides deci-

sion makers with the expected savings from an investment, based on the best scientific esti-

mates. The Robust Decision Making analysis begins by describing the conditions where such

an investment would pass a cost-benefit test, estimates the probability such a scenario would

have to have to justify making the investment, and then assembles the scientific evidence that

can help a decision maker judge whether or not the investment is worthwhile. In some cases,

Robust Decision Making can provide important additional understanding about the problem

for decision-makers and analysts. For example, the case example highlighted here shows how

the Robust Decision Making approach identifies decision-relevant uncertainties as well as the

location of undesirable outcomes in a high-dimensional parameter space. This is an important

insight because it points to areas where a refined analysis and future research has the potential

to improve the decision. Robust Decision Making can also better represent important proper-

ties of the decision-problem compared to the probabilistic approach. Previous studies have

shown that tools used in Robust Decision Making can result in considerably different strate-

gies than the probabilistic approach when deep uncertainty is large and the decision-maker

cares about deeply uncertain outcomes [12,13,118]. In situations where decision makers have

confidence in the best scientific estimates of the probability distributions, the full probabilistic

analysis provides a more streamlined approach. But in situations, such as those faced by Port

of LA as it considers the potential for extreme sea-level rise, where the scientific estimates of

probabilities are at best imprecise, approaches such as Robust Decision Making may provide a

more convenient and transparent framework for organizing the relevant scientific information

and applying it to the decision.

Robust Decision Making has several advantages over full probabilistic analysis, including

the ability to provide additional insights for decision makers and to enable a representation

of deep uncertainty. These advantages come with costs. Robust Decision Making generally

requires more computation. In this example, this extra computation was trivial, involving

500 evaluations of a simple benefit-cost excel spreadsheet requiring only a few minutes on a

standard laptop. In some examples, however, the extra computation could prove substantial.

In addition, a Robust Decision Making analysis has more steps than PRA, some of which

require human intervention and judgment. While such interventions can prove a major ben-

efit when the analytics are used facilitate deliberation among decision makers, it may prove a

drawback in other decision contexts. Finally, this Robust Decision Making analysis required

more detailed queries of the climate information. While the probabilistic analysis used only

the probability density functions, the Robust Decision Making analysis also required judg-

ments about the confidence in various probability density functions and for those regarded

as deeply uncertain, the extent to which the weight of the evidence lies above or below the

critical thresholds for the harden at next upgrade decision. In general, Robust Decision Mak-

ing can be interpreted as an expansion of the analytical tools needed for an expected utility

analysis that neglects aspects such as deep uncertainty. There are, of course, situations where

an expected utility analysis under risk can be appropriate and the added complexities of

Robust Decision Making can be avoided. As shown above, the problem discussed in this

study is not one of these cases. Many problems involving climate change fall into the same

category [10,118].
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